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Nematic ordering of rigid rods in a gravitational field
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The isotropic-to-nematic transition in an athermal solution of long rigid rods subject to a gravitdtonal
centrifuga) field is theoretically considered in the Onsager approximation. The new feature emerging in the
presence of gravity is a concentration gradient that coupled with the nematic ordering. For rodlike molecules
this effect becomes noticeable at centrifugal accelerajierl0®>~10* m/s?, while for biological rodlike ob-
jects, such as tobacco mosaic virus, the effect is important even for normal gravitational acceleration condi-
tions. Rods are concentrated near the bottom of the vessel, which sometimes leads to gravity induced nematic
ordering. The concentration range corresponding to phase separation increases with ingréagheyregion
of phase separation the local rod concentration, as well as the order parameter, follow a step function with
height.[S1063-651X99)15508-9

PACS numbd(s): 61.30.Cz, 64.70.Md, 61.25.Hq

I. INTRODUCTION count steric repulsion only. Let us choose the Cartesian co-
ordinate system in such a way that the external field acts in
Nematic ordering in a solution of long rigid rods has beenthe z direction and put the origin of coordinates at the bottom
studied theoretically in many papers, starting from the clasof the reservoir £=0). Further, let us divide the volume of
sical papers by Onsaggt] and Flory[2]. However, there is  the vesselV into large number of identical layers aligned
one aspect of this problem that has never been consideregerpendicularly to the field in order that all particles in a
namely that this transition always occurs in a gravitationalgiven layer have the same gravitational potential. Here we

field. This field induces a concentration inhomogeneity,se the following notationdN,(Q)=N,f,(Q)dQ is the
within the volume where nematic ordering takes place. Such,mber of rods in the layer with axis directions within the

inhomogeneity should, in principle, change some of the charg, 4| spatial anglél, N, is the total number of rods in the

acterr]istics of the Ii:quid-crystalline transition. " _ layer z, and {=z/h denotes the dimensionless height. Let
The dimensionless parameter associated wit graVItarz(Q) be one-particle orientational distribution function of

tional field is5=mghkT, wherem=m,—pv is the mass of ,4s'in the layer. The normalization for the functiofy(Q2)
a rod corrected for buoyancy (@ndv are the density of pure o \\vittan in the familiar formf f (Q)dQ =1
4 .

solvent and the volume of the rod, respectiyelly is the
height, g is the gravitational acceleratiof, is the tempera-
ture, andk is the Boltzmann constant. Fbe=1 cm and room
temperature conditions, this gives the following criterion: the
inhomogeneity due to the normal gravitational acceleratio
(9.8 m/€) becomes important for molecular masses of ro
more than 16 g/mol. Thus, for rigid rods made of common
synthetic macromoleculesn~10° g/mol), this effect can
be neglected.
However, in at least two situations the effect of gravity on w({)
the problem of the liquid crystalline transition is important — =In c’(g)+f f(Q,0)In(Amf(Q,2)dQ
and experimentally relevant. First, for nematic ordering in kT
solutions of high molecular weight, rodlike biological ob-
jects[such as tobacco mosaic vir(BMV) or virusfd] [3—7] + C’(g)f f(Q1,0)f(Q5,0)a,(y)dQ,dQ,
m can be very largerfiy=4x 10" g/mol for TMV, [4]) and
values of 3>1 can easily be reached. Second, instead of
normal gravitational acceleration, one can consider the accel- + f BLf(€,{)dQ, (1)
eration in an ultracentrifuge, which can be*tQL0° times
larger than ordinary gravity. For at least these cases, the iRyhere the first term represents the entropy of a translational
vestigation of the influence of gravitational field on the nem-i,qiion, the second term is the orientation entropy, the third
atic ordering in the solution of rigid rods seems to be anerm describes steric interaction of rods in the second virial
important problem. This problem is solved theoretically be-gpproximation, and the last term is the average potential en-
low in the Onsager approximation. ergy of a rod in an external gravitational fieldl(Z)/kT
=mghkT{=p¢.
To calculate the third term one assumes that the
The Onsager approach is based on a virial expansion of-dependent second virial coefficiea} is half of the ex-
the free energy of the solution of rigid rods taking into ac-cluded volume of two rodg1], thus a,(y)=L?D|sin%,

With such division of the volume of the vessel into very

large number of layers, the local rod concentratiiil) has
the same value within the layer. Thus, for a given layer one
can apply the traditional Onsager thedty8,9 justified for a
r"homogeneous system. This theory is valid for dilute enough
dsolutions of very long rods.

In this case, the local free energy of the layer labelesl
written as

Il. THEORETICAL MODEL
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whereL and D are the length and diameter for long rigid  Substituting this function into Eq$5)—(7) and minimiz-

rods, andy is the angle between directions of long axes. ing with respect tax({), we have the following equation for
The free energy of the whole system is a sum of freethe definition of variational functiom(¢):

energies of all layers. If the number of layers is large enough,

the sum can be replaced by integral dffa(a) Pa(a)
da +C4(0) =0. (8)
_(taz c w ()
VKT Jo (CO~T KT However, the trial function proposed by Onsadét,

f(Q,a)=[al(47 sinh®)]cosh cos®), where® is the an-
1 , ) , ) gular deviation of a rod from the director, still leads to a
:fo dZ C'(H[INC' () +o(L)+C'(Hp' () +BL, rather complicated integral equation. Therefore, following
[9] for the sake of simplicity, we used a trial function of
(2 simpler form,

h 02
o(é)zf f(Q,0)In(47f(Q,2))dQ ©) fa@, “(5))_ o2 T ©
a({)(7—0)
e 2 , E<®<’7T,

is the orientational entropy of the layé&rand _ _ o _
with an approximate normalizatiofprecise up to terms of

orderO(e™%)].
p'(é’):j f(Q1,0f(Q2,0)ax(y)dQ2,dQ, (4) This trial function is suitable for an approximate evalua-

tion of o,(«({)) in the case of highly ordered stdt@]

is the second virial coefficient of interaction of two rods.

To obtain the equilibrium distribution function we should Ua(a(i))Ef f.(Q,a(0)In(4mf (Q,a()))dQ

take into account the possibility of the formation of a phase

boundary between the nematic phase at the bottom of the

vessel and isotropic phase on top. We denote the height of

the boundary position in the vessel &s x, so the volumes  and the dimensionless second virial coefficient in the aniso-

occupied by the nematic and isotropic phases\§f&XV  tropic phasd9]

andV;=(1-x)V, respectively. With this, the free energy of

~na(f)—1 (10

the whole systeniEg. (2)] becomes ()= pa(g)
Pal6)=
a(§) .(é)
e oo o T [arcio T ® 4
=2 10120120 et 5Ny 0,00,
where
S (11
A0 o Y
TS SN CUD+ 0O+ CUOPU D+ BL (O ma(d)
with notation b=((p’());)i=L2D{{|siny))i==/4L?D;
is the local free energy of the nematic phase, and the value ofb is equal to half of the average excluded vol-
ume of two arbitrary oriented rods.
|L(T§) INC!(2)+01()+CL(O)p! (O)+ B R The corresponding expressions in the isotropic phase are
o;=0 andp;=1. (12

is the local free energy of the isotropic phase.

To calculate the equilibrium distribution functidif(2,¢),
one should minimize the function&b) with respect to this
function. The direct minimization of functionéb) leads to a
nonlinear integral equation, which can be solved only nuiSOtropic distribution functiorf; () =1/4. .
merically[10,11]. In the case where the volume of the vessel Substituting the calculated values back into B8).yields
consists of two phases separated by a phase boundary, offi¢ following expression for the functio(():
should realize thaf((2,¢) follows a step function with the
variation of ¢ with the functionf,(Q,{) in the anisotropic Ja(0) = 2Ca(0) (13)
part significantly different from that in the isotropic phase Jr
fi({)=1/4m. To evaluate the distribution functidiy(2,¢),
in the nematic phase we apply an approximate variationalvhere C,(¢)=C/.({)b is the dimensionless local rod con-
method with a trial function depending on variational param-centration in the nematic phase.
eter a. Thus, Eqgs(6), (7), (12), and(13) give

In the above formulas, the indicésand a refer to the
isotropic phase and the nematic phase respectively, and the
angular brackets designate the average with respect to the
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@a(d) _ 2C4(9)
and
i) =InC{ () +Ci({)+BL. (15)
KT

The chemical potentials in the phases can be also ob

tained,

Ma,i:ma,i+pa,i(g)Va,i(é)i (16)

where va,i(g)zllc;yi(g’) is the local specific volume and
Pa.i(¢) is the pressure in the layér

ama,i(g)

_ r zama,i(g)
)

—_— . 1
9C4i(0) 0

pa,i(g): -
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FIG. 1. Phase diagram in the variabl@sC for athermal solu-
tion of long rigid rods. Here8B=mgh/kT is the dimensionless pa-
rameter associated with the external fie@ljs the dimensionless
average rod concentration. Labildesignates the nematic phase
andl designates the isotropic phase, while- | corresponds to the
phase separation region.

The calculation of the pressure in the nematic and isotro-

pic phases give&compare with Ref[9])

Pa({)=3C4(0), (19
Pi(O)=C{(H[1+Ci(]. (19
Consequently, Eq€16), (14), (15), and(17) give
“;(0 —InCL(0)+2In jg) a1 B (20
and
”i'((f) =InC{()+2C;({)+1+BL. (21)

In the equilibrium the chemical potential is independent
of height and is the same in the both phases, thus one can

obtain the equilibrium local concentrations in the phases:

!
2 o= B3

[ (x) ' (22)

Cad)=

The equilibrium concentrations in the phases are deter-
mined by the following coexistence relations at the bound-
ary:

Pa(X)=pi(X)
al(X)= wmi(X).

Substituting calculated values of chemical potenfi&igs.
(20) and (21)] and pressurefEgs. (18) and (19)] with ob-
tained concentrations in the phag@®) and (23), the coex-
istence relation$25) are written as

(25

! /
BxI3___ 1 A—pBx

e e
1(X) 2(X)

! I

2C
00 M e T M oo

e Bx

1+

12(x)

C;
00°
(26)

where C,=C/b and C;=C{b are dimensionless average
concentrations in the nematic and isotropic phases, respec-
tively.

If the gravitational field is absenig(~0), Eqs.(26) are
reduced to corresponding equations for the homogeneous

whereC/ is the average concentration in the nematic phasesystem[9].

1.(x)=[he” P¥3d¢ is the normalization factor.
Also,

1
5 —LW(2be Aé 1t my,

cl(O=5 23

where the functio. W(x) corresponds to a solution of equa-
tion LW exp(LW)=x. For dilute solutions we can use the
simple asymptotic form of this special functiobW(x)=x
+0(x?).

Thus,

C/
a8

00 (24

Cl ()=

with 1 ,(x)=[te P,

IIl. OBTAINED RESULTS

The numerical solution of Eqg26) gives the values of
average dimensionless concentrations of the nematic and iso-
tropic phasesC, and C;, coexisting at equilibrium. The
phase diagram in the variablés average rod concentration
C — dimensionless paramet@ is shown in Fig. 1. This
diagram has three main regions. In the region labeled by
letterl, the entire solution of rods is isotropicorresponding
height of the boundaryx=0). In the region between the
curves of coexistencg;(B) andC,(B), the solution is sepa-
rated in the isotropic and nematic phases with an interphase
boundary between them €0x<1). In the region designated
by letterN, the entire volume of the vessel is occupied by the
nematic phasex=1). This diagram reveals that gravity fa-
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Local Rod Concentration

FIG. 2. Dependence of the dimensionless local rod concentra- F!G- 4. The phase boundary position plotted as a functiog of
tion C(¢) on the dimensionless heigltat fixed value of3. The for different values of dimensionless total rod concentraohe
open circles correspond 18=1.1; the solid circles correspond to Solid circles refer taC=4.8; the open triangles refer @=4.1; the
B=6.1; the dimensionless total rod concentratiolCis 3.4. solid squares refer t0=3.4.

ever, with an increase @, the local rod concentration at the

cilitates formation of the nematic phasat least at the bot- : -
phagat bottom of the vessel gradually increases. Thus, for high val-

tom of the vesseland the region of phase separation be- AR : !
comes very broad even for rather low valuesgof ues of 8 barometric distribution, Eq22) is no longer valid.

The dependence of the local rod concentration on the To gengralize the Onsager theory for the case of high rod
height at a fixed value of3 is shown in Fig. 2. The con- concentrations one can use the Parsons approximgtign

centrationgC,(¢) andC;({) obey the barometric distribution which aims to improve the 'se.cond virial'coefficie(ml) by .
according to Eqs(22) and(24), respectively. The concentra- means of an additional multiplier depending on mole fraction

tions of the nematic and isotropic phases in the boundarggrOdl\Sl’ as \t"r’]elll as S(t)r:ne otlhelr %_enerall_ﬁnmisRefls.t[_lS; i
layer coincide with that in the absence of the figld,(x) ). Nevertheless, the calculations with nonanalytic distri-

—5.12 andC,(x) = 3.45[9]]. This is the case because all the bution arising from such an approach are rather complicated

rods within a given layer exhibit the same gravitational pc)_and lead to an additional integral equation. In most practical
cases, except for sedimentation in an ultracentrifuge, the val-

ial. Th h ion foll functi . o
tentia us, the rod concentration follows a step unctlonues of 3 are not too highe.g. for TMV 3 is slightly above

with a jump at the phase boundary. h it d a traditional d virial ‘mation i
The corresponding change with height of the order paramduﬁt;?&iiﬁzg a traditional second virial approximation 1S

eter S(¢) = [ P,(cosa(Q,0))f(Q,£)dQ is shown in Fig. 3. ” .
The order paramete3(¢) in the nematic phase is overstated The position of the phase. bogndary )&.for @fferent
values of total rod concentration is shown in Fig. 4. These

due to the approximate trial function of the fo8). With an : .
increase of the order parameter decreases to the value COI}:_)Iots lead to the following conclusions. If the total rod con-

responding to a nematic phase coexisting with an isotropigentra.t'%n Ls Iot\;]v eQOthgh.g., thﬁ ggitgr partthof t_he vessel IS
one in the absence of gravity and then falls to zero. occupied by the 1solropic phas 1), the increasing

The Onsager approximatidt) used in this paper is valid gravity induc.es the isotropic-to-nematic transition and phasg
for low rod concentrationgvolume fractione<0.1). How- boundary shifts toward the top of the vessel. This process is

observed unti3~1 and then the shift of the boundary stops,
S 1A0-|
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FIG. 3. Dependence of the order param&en the dimension- FIG. 5. Average concentrations of rods in isotropic and nematic
less height{ at fixed values ofB. Open circles correspond t8 phases as a function ¢@f for different values of the total rod con-
=1.1; the solid circles correspond #®=6.1; the dimensionless centrationC. The open circles correspond ©=3.4; the solid
total rod concentration i€=3.4. squares correspond ©=4.8.
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and the volume of nematic phase even slightly decrddlses centrations corresponding to the curves of Fig(dashed
bottom phase becomes denser under gragityid square. lines in Fig. 9. This is becausg~h, whereh is the total
If the total rod concentration is high enoug@+{C,), the  height of the vessel. Thus, the paramegers different for
nematic phase simply shrinks under gravity starting from theseparate phases and for the system as a whole. That is why
top of the vessel and the position of the phase boundarthe average concentrations of the phases lie within the region
becomes gradually lowdsolid circles. of phase separation shown in Fig. 1.

Furthermore, it is noteworthy to emphasize the important
conclusion arising from the form of Fig. 1. The right branch
of the plot rises very rapidly g8 gets large, thus, remaining IV. CONCLUSIONS
within the framework of general concepts dealing with spa-

tially homogeneous phases, one could suggest that the COfiﬁuid-crystalline transition at the bottom of the vessel and

pentration (.)f rods in the nema}tic phasg should also rapidl)f)roaden the region of phase separation. This phenomenon
increase with8. However, the increase in the average CON“should be noticeable for biological rodlike objects or com-

centration in the nematic phase is not as drastic as it foIIOWﬁ10n lyotropic molecules sedimenting in a centrifugal field.

from Fig. 1. Th? general reason is that the “rule of lever This seems to be an important problem that requires experi-
cannot be applied for the present system because we AL ntal investigation

dealing with spatially inhomogeneous phases.

The average concentrations of nematic and isotropic
phases, corresponding to phase separation, are shown in Fig.
5. This plot demonstrates that the average concentrations in
both phases at a fixed value gf do depend on the total The authors thank Dr. S. Fraden who has drawn their
concentration of rods and they dot coincide with the con-  attention to this unsolved problem.

Gravitational or centrifugal external fields facilitate the
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