
PHYSICAL REVIEW E SEPTEMBER 1999VOLUME 60, NUMBER 3
Nematic ordering of rigid rods in a gravitational field
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Physics Department, Moscow State University, Moscow 117234, Russia

~Received 23 December 1998; revised manuscript received 7 April 1999!

The isotropic-to-nematic transition in an athermal solution of long rigid rods subject to a gravitational~or
centrifugal! field is theoretically considered in the Onsager approximation. The new feature emerging in the
presence of gravity is a concentration gradient that coupled with the nematic ordering. For rodlike molecules
this effect becomes noticeable at centrifugal accelerationg;103– 104 m/s2, while for biological rodlike ob-
jects, such as tobacco mosaic virus, the effect is important even for normal gravitational acceleration condi-
tions. Rods are concentrated near the bottom of the vessel, which sometimes leads to gravity induced nematic
ordering. The concentration range corresponding to phase separation increases with increasingg. In the region
of phase separation the local rod concentration, as well as the order parameter, follow a step function with
height.@S1063-651X~99!15508-9#

PACS number~s!: 61.30.Cz, 64.70.Md, 61.25.Hq
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I. INTRODUCTION

Nematic ordering in a solution of long rigid rods has be
studied theoretically in many papers, starting from the cl
sical papers by Onsager@1# and Flory@2#. However, there is
one aspect of this problem that has never been conside
namely that this transition always occurs in a gravitatio
field. This field induces a concentration inhomogene
within the volume where nematic ordering takes place. S
inhomogeneity should, in principle, change some of the ch
acteristics of the liquid-crystalline transition.

The dimensionless parameter associated with grav
tional field isb[mgh/kT, wherem5m02 r̃v is the mass of
a rod corrected for buoyancy (r̃ andv are the density of pure
solvent and the volume of the rod, respectively!, h is the
height,g is the gravitational acceleration,T is the tempera-
ture, andk is the Boltzmann constant. Forh51 cm and room
temperature conditions, this gives the following criterion: t
inhomogeneity due to the normal gravitational accelerat
(9.8 m/s2) becomes important for molecular masses of r
more than 107 g/mol. Thus, for rigid rods made of commo
synthetic macromolecules (m0;105 g/mol!, this effect can
be neglected.

However, in at least two situations the effect of gravity
the problem of the liquid crystalline transition is importa
and experimentally relevant. First, for nematic ordering
solutions of high molecular weight, rodlike biological ob
jects@such as tobacco mosaic virus~TMV ! or virus fd# @3–7#
m can be very large (m0543107 g/mol for TMV, @4#! and
values ofb.1 can easily be reached. Second, instead
normal gravitational acceleration, one can consider the ac
eration in an ultracentrifuge, which can be 1044105 times
larger than ordinary gravity. For at least these cases, the
vestigation of the influence of gravitational field on the ne
atic ordering in the solution of rigid rods seems to be
important problem. This problem is solved theoretically b
low in the Onsager approximation.

II. THEORETICAL MODEL

The Onsager approach is based on a virial expansio
the free energy of the solution of rigid rods taking into a
PRE 601063-651X/99/60~3!/2973~5!/$15.00
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count steric repulsion only. Let us choose the Cartesian
ordinate system in such a way that the external field act
thez direction and put the origin of coordinates at the botto
of the reservoir (z50). Further, let us divide the volume o
the vesselV into large number of identical layers aligne
perpendicularly to the field in order that all particles in
given layer have the same gravitational potential. Here
use the following notation:dNz(V)5Nzf z(V)dV is the
number of rods in the layerz with axis directions within the
small spatial angledV, Nz is the total number of rods in the
layer z, and z5z/h denotes the dimensionless height. L
f z(V) be one-particle orientational distribution function
rods in the layerz. The normalization for the functionf z(V)
is written in the familiar form* f z(V)dV51.

With such division of the volume of the vessel into ve
large number of layers, the local rod concentrationC8(z) has
the same value within the layer. Thus, for a given layer o
can apply the traditional Onsager theory@1,8,9# justified for a
homogeneous system. This theory is valid for dilute enou
solutions of very long rods.

In this case, the local free energy of the layer labeledz is
written as

Ã~z!

kT
5 ln C8~z!1E f ~V,z!ln„4p f ~V,z!…dV

1C8~z!E f ~V1 ,z! f ~V2 ,z!a2~g!dV1dV2

1E bz f ~V,z!dV, ~1!

where the first term represents the entropy of a translatio
motion, the second term is the orientation entropy, the th
term describes steric interaction of rods in the second vi
approximation, and the last term is the average potential
ergy of a rod in an external gravitational fieldUext(z)/kT
5 mgh/kTz[bz.

To calculate the third term one assumes that
g-dependent second virial coefficienta2 is half of the ex-
cluded volume of two rods@1#, thus a2(g)5L2Dusingu,
2973 © 1999 The American Physical Society
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where L and D are the length and diameter for long rig
rods, andg is the angle between directions of long axes.

The free energy of the whole system is a sum of f
energies of all layers. If the number of layers is large enou
the sum can be replaced by integral

F

VkT
5E

0

1

dz C8~z!
Ã~z!

kT

5E
0

1

dz C8~z!@ ln C8~z!1s~z!1C8~z!r8~z!1bz#,

~2!

where

s~z![E f ~V,z!ln„4p f ~V,z!…dV ~3!

is the orientational entropy of the layerz and

r8~z!5E f ~V1 ,z! f ~V2 ,z!a2~g!dV1dV2 ~4!

is the second virial coefficient of interaction of two rods.
To obtain the equilibrium distribution function we shou

take into account the possibility of the formation of a pha
boundary between the nematic phase at the bottom of
vessel and isotropic phase on top. We denote the heigh
the boundary position in the vessel asz5x, so the volumes
occupied by the nematic and isotropic phases areVa5xV
andVi5(12x)V, respectively. With this, the free energy o
the whole system@Eq. ~2!# becomes

F

VkT
5E

0

x

dz Ca8~z!
Ãa~z!

kT
1E

x

1

dz Ci8~z!
Ã i~z!

kT
, ~5!

where

Ãa~z!

kT
5 ln Ca8~z!1sa~z!1Ca8~z!ra8~z!1bz ~6!

is the local free energy of the nematic phase, and

Ã i~z!

kT
5 ln Ci8~z!1s i~z!1Ci8~z!r i8~z!1bz ~7!

is the local free energy of the isotropic phase.
To calculate the equilibrium distribution functionf (V,z),

one should minimize the functional~5! with respect to this
function. The direct minimization of functional~5! leads to a
nonlinear integral equation, which can be solved only n
merically @10,11#. In the case where the volume of the ves
consists of two phases separated by a phase boundary
should realize thatf (V,z) follows a step function with the
variation of z with the function f a(V,z) in the anisotropic
part significantly different from that in the isotropic pha
f i(z)51/4p. To evaluate the distribution functionf a(V,z),
in the nematic phase we apply an approximate variatio
method with a trial function depending on variational para
etera.
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Substituting this function into Eqs.~5!–~7! and minimiz-
ing with respect toa(z), we have the following equation fo
the definition of variational functiona(z):

dsa~a!

da
1Ca8~z!

dra8~a!

da
50. ~8!

However, the trial function proposed by Onsager@1#,
f (V,a)5@a/(4p sinhQ)#cosh(a cosQ), whereQ is the an-
gular deviation of a rod from the director, still leads to
rather complicated integral equation. Therefore, followi
@9# for the sake of simplicity, we used a trial function o
simpler form,

f a„V,a~z!…5
a~z!

4p H e2
a(z)Q2

2 , 0,Q,
p

2

e2
a(z)(p2Q)2

2 ,
p

2
,Q,p,

~9!

with an approximate normalization@precise up to terms o
orderO(e2a)].

This trial function is suitable for an approximate evalu
tion of sa„a(z)… in the case of highly ordered state@9#

sa„a~z!…[E f a„V,a~z!…ln~4p f a„V,a~z!…!dV

' ln a~z!21 ~10!

and the dimensionless second virial coefficient in the an
tropic phase@9#

ra~z!5
ra8~z!

b

5
4

pE f a„V1 ,a~z!…f a„V2 ,a~z!…usingudV1dV2

'
4

Apa~z!
~11!

with notation b[Š^r8(z)& i‹i5L2DŠ^usingu&i‹i5p/4L2D;
the value ofb is equal to half of the average excluded vo
ume of two arbitrary oriented rods.

The corresponding expressions in the isotropic phase

s i50 and r i51. ~12!

In the above formulas, the indicesi and a refer to the
isotropic phase and the nematic phase respectively, and
angular brackets designate the average with respect to
isotropic distribution functionf i(V)51/4p.

Substituting the calculated values back into Eq.~8! yields
the following expression for the functiona(z):

Aa~z!5
2Ca~z!

Ap
, ~13!

where Ca(z)5Ca8(z)b is the dimensionless local rod con
centration in the nematic phase.

Thus, Eqs.~6!, ~7!, ~12!, and~13! give
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Ãa~z!

kT
5 ln Ca8~z!12 ln

2Ca~z!

Ap
111bz ~14!

and

Ã i~z!

kT
5 ln Ci8~z!1Ci~z!1bz. ~15!

The chemical potentials in the phases can be also
tained,

ma,i5Ãa,i1pa,i~z!va,i~z!, ~16!

where va,i(z)51/Ca,i
8 (z) is the local specific volume an

pa,i(z) is the pressure in the layerz:

pa,i~z!52
]Ãa,i~z!

]va,i~z!
5@Ca,i8 ~z!#2

]Ãa,i~z!

]Ca,i8 ~z!
. ~17!

The calculation of the pressure in the nematic and iso
pic phases gives~compare with Ref.@9#!

pa~z!53Ca8~z!, ~18!

pi~z!5Ci8~z!@11Ci~z!#. ~19!

Consequently, Eqs.~16!, ~14!, ~15!, and~17! give

ma~z!

kT
5 ln Ca8~z!12 ln

2Ca~z!

Ap
141bz ~20!

and

m i~z!

kT
5 ln Ci8~z!12Ci~z!111bz. ~21!

In the equilibrium the chemical potential is independe
of height and is the same in the both phases, thus one
obtain the equilibrium local concentrations in the phases

Ca8~z!5
Ca8

I 1~x!
e2 bz/3, ~22!

whereCa8 is the average concentration in the nematic pha
I 1(x)[*0

xe2 bz/3dz is the normalization factor.
Also,

Ci8~z!5
1

2b
LW~2be2bz211m i !, ~23!

where the functionLW(x) corresponds to a solution of equ
tion LW exp(LW)5x. For dilute solutions we can use th
simple asymptotic form of this special function:LW(x)5x
1O(x2).

Thus,

Ci8~z!'
Ci8

I 2~x!
e2bz ~24!

with I 2(x)[*x
1e2bzdz.
b-

-

t
an

e,

The equilibrium concentrations in the phases are de
mined by the following coexistence relations at the boun
ary:

H pa~x!5pi~x!

ma~x!5m i~x!.
~25!

Substituting calculated values of chemical potentials@Eqs.
~20! and ~21!# and pressures@Eqs. ~18! and ~19!# with ob-
tained concentrations in the phases~22! and ~23!, the coex-
istence relations~25! are written as

5 3
Ca8

I 1~x!
e2 bx/35

Ci8

I 2~x!
e2bxS 11

Ci

I 2~x!
e2bxD

ln
Ca8

I 1~x!
12 ln

2Ca

I 1~x!Ap
135 ln

Ci8

I 2~x!
12

Ci

I 2~x!
e2bx,

~26!

where Ca[Ca8b and Ci[Ci8b are dimensionless averag
concentrations in the nematic and isotropic phases, res
tively.

If the gravitational field is absent (g→0), Eqs.~26! are
reduced to corresponding equations for the homogene
system@9#.

III. OBTAINED RESULTS

The numerical solution of Eqs.~26! gives the values of
average dimensionless concentrations of the nematic and
tropic phases,Ca and Ci , coexisting at equilibrium. The
phase diagram in the variablesL: average rod concentratio
C – dimensionless parameterb is shown in Fig. 1. This
diagram has three main regions. In the region labeled
letter I, the entire solution of rods is isotropic~corresponding
height of the boundary,x50). In the region between the
curves of coexistenceCi(b) andCa(b), the solution is sepa-
rated in the isotropic and nematic phases with an interph
boundary between them (0,x,1). In the region designated
by letterN, the entire volume of the vessel is occupied by t
nematic phase (x51). This diagram reveals that gravity fa

FIG. 1. Phase diagram in the variablesb –C for athermal solu-
tion of long rigid rods. Hereb[mgh/kT is the dimensionless pa
rameter associated with the external field;C is the dimensionless
average rod concentration. LabelN designates the nematic phas
andI designates the isotropic phase, whileN1I corresponds to the
phase separation region.
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cilitates formation of the nematic phase~at least at the bot-
tom of the vessel! and the region of phase separation b
comes very broad even for rather low values ofb.

The dependence of the local rod concentration on
heightz at a fixed value ofb is shown in Fig. 2. The con
centrationsCa(z) andCi(z) obey the barometric distribution
according to Eqs.~22! and~24!, respectively. The concentra
tions of the nematic and isotropic phases in the bound
layer coincide with that in the absence of the field@Ca(x)
55.12 andCa(x)53.45@9##. This is the case because all th
rods within a given layer exhibit the same gravitational p
tential. Thus, the rod concentration follows a step funct
with a jump at the phase boundary.

The corresponding change with height of the order para
eter S(z)5*P2„cosa(V,z)…f (V,z)dV is shown in Fig. 3.
The order parameterS(z) in the nematic phase is overstate
due to the approximate trial function of the form~9!. With an
increase ofz the order parameter decreases to the value
responding to a nematic phase coexisting with an isotro
one in the absence of gravity and then falls to zero.

The Onsager approximation~1! used in this paper is valid
for low rod concentrations~volume fractionw<0.1). How-

FIG. 2. Dependence of the dimensionless local rod concen
tion C(z) on the dimensionless heightz at fixed value ofb. The
open circles correspond tob51.1; the solid circles correspond t
b56.1; the dimensionless total rod concentration isC53.4.

FIG. 3. Dependence of the order parameterSon the dimension-
less heightz at fixed values ofb. Open circles correspond tob
51.1; the solid circles correspond tob56.1; the dimensionless
total rod concentration isC53.4.
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ever, with an increase ofb, the local rod concentration at th
bottom of the vessel gradually increases. Thus, for high v
ues ofb barometric distribution, Eq.~22! is no longer valid.

To generalize the Onsager theory for the case of high
concentrations one can use the Parsons approximation@12#,
which aims to improve the second virial coefficient~11! by
means of an additional multiplier depending on mole fract
of rods, as well as some other generalizations~cf. Refs.@13–
16#!. Nevertheless, the calculations with nonanalytic dis
bution arising from such an approach are rather complica
and lead to an additional integral equation. In most pract
cases, except for sedimentation in an ultracentrifuge, the
ues ofb are not too high~e.g. for TMV b is slightly above
the unity!, and a traditional second virial approximation
quite justified.

The position of the phase boundary vsb for different
values of total rod concentration is shown in Fig. 4. The
plots lead to the following conclusions. If the total rod co
centration is low enough~i.e., the greater part of the vessel
occupied by the isotropic phase,C;Ci), the increasing
gravity induces the isotropic-to-nematic transition and ph
boundary shifts toward the top of the vessel. This proces
observed untilb;1 and then the shift of the boundary stop

FIG. 5. Average concentrations of rods in isotropic and nem
phases as a function ofb for different values of the total rod con
centrationC. The open circles correspond toC53.4; the solid
squares correspond toC54.8.

a- FIG. 4. The phase boundary position plotted as a function ob
for different values of dimensionless total rod concentrationC. The
solid circles refer toC54.8; the open triangles refer toC54.1; the
solid squares refer toC53.4.
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and the volume of nematic phase even slightly decreases@the
bottom phase becomes denser under gravity~solid squares!#.
If the total rod concentration is high enough (C;Ca), the
nematic phase simply shrinks under gravity starting from
top of the vessel and the position of the phase bound
becomes gradually lower~solid circles!.

Furthermore, it is noteworthy to emphasize the import
conclusion arising from the form of Fig. 1. The right bran
of the plot rises very rapidly asb gets large, thus, remainin
within the framework of general concepts dealing with sp
tially homogeneous phases, one could suggest that the
centration of rods in the nematic phase should also rap
increase withb. However, the increase in the average co
centration in the nematic phase is not as drastic as it follo
from Fig. 1. The general reason is that the ‘‘rule of leve
cannot be applied for the present system because we
dealing with spatially inhomogeneous phases.

The average concentrations of nematic and isotro
phases, corresponding to phase separation, are shown in
5. This plot demonstrates that the average concentration
both phases at a fixed value ofb do depend on the tota
concentration of rods and they donot coincide with the con-
ys
e
ry

t

-
n-

ly
-
s

re

ic
ig.
in

centrations corresponding to the curves of Fig. 1~dashed
lines in Fig. 5!. This is becauseb;h, whereh is the total
height of the vessel. Thus, the parameterb is different for
separate phases and for the system as a whole. That is
the average concentrations of the phases lie within the re
of phase separation shown in Fig. 1.

IV. CONCLUSIONS

Gravitational or centrifugal external fields facilitate th
liquid-crystalline transition at the bottom of the vessel a
broaden the region of phase separation. This phenome
should be noticeable for biological rodlike objects or co
mon lyotropic molecules sedimenting in a centrifugal fie
This seems to be an important problem that requires exp
mental investigation.
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